Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38352481

RESUMO

Purpose: To overcome the major challenges in dMRI acquisition, including low SNR, distortion/blurring, and motion vulnerability. Methods: A novel Romer-EPTI technique is developed to provide distortion-free dMRI with significant SNR gain, high motion-robustness, sharp spatial resolution, and simultaneous multi-TE imaging. It introduces a ROtating-view Motion-robust supEr-Resolution technique (Romer) combined with a distortion/blurring-free EPTI encoding. Romer enhances SNR by a simultaneous multi-thick-slice acquisition with rotating-view encoding, while providing high motion-robustness through a motion-aware super-resolution reconstruction, which also incorporates slice-profile and real-value diffusion, to resolve high-isotropic-resolution volumes. The in-plane encoding is performed using distortion/blurring-free EPTI, which further improves effective spatial resolution and motion robustness by preventing not only T2/T2*-blurring but also additional blurring resulting from combining encoded volumes with inconsistent geometries caused by dynamic distortions. Self-navigation was incorporated to enable efficient phase correction. Additional developments include strategies to address slab-boundary artifacts, achieve minimal TE for SNR gain at 7T, and achieve high robustness to strong phase variations at high b-values. Results: Using Romer-EPTI, we demonstrate distortion-free whole-brain mesoscale in-vivo dMRI at both 3T (500-µm-iso) and 7T (485-µm-iso) for the first time, with high SNR efficiency (e.g., 25×), and high image quality free from distortion and slab-boundary artifacts with minimal blurring. Motion experiments demonstrate Romer-EPTI's high motion-robustness and ability to recover sharp images in the presence of motion. Romer-EPTI also demonstrates significant SNR gain and robustness in high b-value (b=5000s/mm2) and time-dependent dMRI. Conclusion: Romer-EPTI significantly improves SNR, motion-robustness, and image quality, providing a highly efficient acquisition for high-resolution dMRI and microstructure imaging.

2.
bioRxiv ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38328081

RESUMO

Purpose: To develop EPTI, a multi-shot distortion-free multi-echo imaging technique, into a single-shot acquisition to achieve improved robustness to motion and physiological noise, increased temporal resolution, and high SNR efficiency for dynamic imaging applications. Methods: A new spatiotemporal encoding was developed to achieve single-shot EPTI by enhancing spatiotemporal correlation in k-t space. The proposed single-shot encoding improves reconstruction conditioning and sampling efficiency, with additional optimization under various accelerations to achieve optimized performance. To achieve high SNR efficiency, continuous readout with minimized deadtime was employed that begins immediately after excitation and extends for an SNR-optimized length. Moreover, k-t partial Fourier and simultaneous multi-slice acquisition were integrated to further accelerate the acquisition and achieve high spatial and temporal resolution. Results: We demonstrated that ss-EPTI achieves higher tSNR efficiency than multi-shot EPTI, and provides distortion-free imaging with densely-sampled multi-echo images at resolutions ~1.25-3 mm at 3T and 7T-with high SNR efficiency and with comparable temporal resolutions to ss-EPI. The ability of ss-EPTI to eliminate dynamic distortions common in EPI also further improves temporal stability. For fMRI, ss-EPTI also provides early-TE images (e.g., 2.9ms) to recover signal-intensity and functional-sensitivity dropout in challenging regions. The multi-echo images provide TE-dependent information about functional fluctuations, successfully distinguishing noise-components from BOLD signals and further improving tSNR. For diffusion MRI, ss-EPTI provides high-quality distortion-free diffusion images and multi-echo diffusion metrics. Conclusion: ss-EPTI provides distortion-free imaging with high image quality, rich multi-echo information, and enhanced efficiency within comparable temporal resolution to ss-EPI, offering a robust and efficient acquisition for dynamic imaging.

3.
Magn Reson Med ; 90(2): 483-501, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37093775

RESUMO

PURPOSE: To improve time-resolved reconstructions by training auto-encoders to learn compact representations of Bloch-simulated signal evolution and inserting the decoder into the forward model. METHODS: Building on model-based nonlinear and linear subspace techniques, we train auto-encoders on dictionaries of simulated signal evolution to learn compact, nonlinear, latent representations. The proposed latent signal model framework inserts the decoder portion of the auto-encoder into the forward model and directly reconstructs the latent representation. Latent signal models essentially serve as a proxy for fast and feasible differentiation through the Bloch equations used to simulate signal. This work performs experiments in the context of T2 -shuffling, gradient echo EPTI, and MPRAGE-shuffling. We compare how efficiently auto-encoders represent signal evolution in comparison to linear subspaces. Simulation and in vivo experiments then evaluate if reducing degrees of freedom by incorporating our proxy for the Bloch equations, the decoder portion of the auto-encoder, into the forward model improves reconstructions in comparison to subspace constraints. RESULTS: An auto-encoder with 1 real latent variable represents single-tissue fast spin echo, EPTI, and MPRAGE signal evolution to within 0.15% normalized RMS error, enabling reconstruction problems with 3 degrees of freedom per voxel (real latent variable + complex scaling) in comparison to linear models with 4-8 degrees of freedom per voxel. In simulated/in vivo T2 -shuffling and in vivo EPTI experiments, the proposed framework achieves consistent quantitative normalized RMS error improvement over linear approaches. From qualitative evaluation, the proposed approach yields images with reduced blurring and noise amplification in MPRAGE-shuffling experiments. CONCLUSION: Directly solving for nonlinear latent representations of signal evolution improves time-resolved MRI reconstructions.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Simulação por Computador , Processamento de Imagem Assistida por Computador/métodos
4.
Nat Commun ; 13(1): 7707, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517479

RESUMO

Deep brain stimulation (DBS) to the fornix is an investigational treatment for patients with mild Alzheimer's Disease. Outcomes from randomized clinical trials have shown that cognitive function improved in some patients but deteriorated in others. This could be explained by variance in electrode placement leading to differential engagement of neural circuits. To investigate this, we performed a post-hoc analysis on a multi-center cohort of 46 patients with DBS to the fornix (NCT00658125, NCT01608061). Using normative structural and functional connectivity data, we found that stimulation of the circuit of Papez and stria terminalis robustly associated with cognitive improvement (R = 0.53, p < 0.001). On a local level, the optimal stimulation site resided at the direct interface between these structures (R = 0.48, p < 0.001). Finally, modulating specific distributed brain networks related to memory accounted for optimal outcomes (R = 0.48, p < 0.001). Findings were robust to multiple cross-validation designs and may define an optimal network target that could refine DBS surgery and programming.


Assuntos
Doença de Alzheimer , Estimulação Encefálica Profunda , Humanos , Doença de Alzheimer/terapia , Encéfalo/diagnóstico por imagem , Fórnice/diagnóstico por imagem , Fórnice/fisiologia , Tálamo , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
Magn Reson Med ; 88(3): 1112-1125, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35481604

RESUMO

PURPOSE: To develop a motion estimation and correction method for motion-robust three-dimensional (3D) quantitative imaging with 3D-echo-planar time-resolved imaging. THEORY AND METHODS: The 3D-echo-planar time-resolved imaging technique was designed with additional four-dimensional navigator acquisition (x-y-z-echoes) to achieve fast and motion-robust quantitative imaging of the human brain. The four-dimensional-navigator is inserted into the relaxation-recovery deadtime of the sequence in every pulse TR (∼2 s) to avoid extra scan time, and to provide continuous tracking of the 3D head motion and B0 -inhomogeneity changes. By using an optimized spatiotemporal encoding combined with a partial-Fourier scheme, the navigator acquires a large central k-t data block for accurate motion estimation using only four small-flip-angle excitations and readouts, resulting in negligible signal-recovery reduction to the 3D-echo-planar time-resolved imaging acquisition. By incorporating the estimated motion and B0 -inhomogeneity changes into the reconstruction, multi-contrast images can be recovered with reduced motion artifacts. RESULTS: Simulation shows the cost to the SNR efficiency from the added navigator acquisitions is <1%. Both simulation and in vivo retrospective experiments were conducted, that demonstrate the four-dimensional navigator provided accurate estimation of the 3D motion and B0 -inhomogeneity changes, allowing effective reduction of image artifacts in quantitative maps. Finally, in vivo prospective undersampling acquisition was performed with and without head motion, in which the motion corrupted data after correction show close image quality and consistent quantifications to the motion-free scan, providing reliable quantitative measurements even with head motion. CONCLUSION: The proposed four-dimensional navigator acquisition provides reliable tracking of the head motion and B0 change with negligible SNR cost, equips the 3D-echo-planar time-resolved imaging technique for motion-robust and efficient quantitative imaging.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Artefatos , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Estudos Prospectivos , Estudos Retrospectivos
6.
Neuroimage ; 250: 118963, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35122969

RESUMO

Multi-parametric quantitative MRI has shown great potential to improve the sensitivity and specificity of clinical diagnosis and to enhance our understanding of complex brain processes, but suffers from long scan time especially at high spatial resolution. To address this longstanding challenge, we introduce a novel approach, termed 3D Echo Planar Time-resolved Imaging (3D-EPTI), which significantly increases the acceleration capacity of MRI sampling, and provides high acquisition efficiency for multi-parametric MRI. This is achieved by exploiting the spatiotemporal correlation of MRI data at multiple timescales through new encoding strategies within and between efficient continuous readouts. Specifically, an optimized spatiotemporal CAIPI encoding within the readouts combined with a radial-block sampling strategy across the readouts enables an acceleration rate of 800 fold in the k-t space. A subspace reconstruction was employed to resolve thousands of high-quality multi-contrast images. We have demonstrated the ability of 3D-EPTI to provide robust and repeatable whole-brain simultaneous T1, T2, T2*, PD and B1+ mapping at high isotropic resolution within minutes (e.g., 1-mm isotropic resolution in 3 minutes), and to enable submillimeter multi-parametric imaging to study detailed brain structures.


Assuntos
Mapeamento Encefálico/métodos , Imagem Ecoplanar/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
Magn Reson Med ; 88(1): 164-179, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35225368

RESUMO

PURPOSE: To develop an efficient acquisition technique for distortion-free diffusion MRI and diffusion-relaxometry. METHODS: A new accelerated echo-train shifted echo-planar time-resolved imaging (ACE-EPTI) technique is developed to achieve high-SNR, distortion-free diffusion, and diffusion-relaxometry imaging. ACE-EPTI uses a newly designed variable density spatiotemporal encoding with self-navigators for phase correction, that allows for submillimeter in-plane resolution using only 3-shot. Moreover, an echo-train-shifted acquisition is developed to achieve minimal TE, together with an SNR-optimal readout length, leading to ∼30% improvement in SNR efficiency over single-shot EPI. To recover the highly accelerated data with high image quality, a tailored subspace image reconstruction framework is developed, that corrects for odd/even-echo phase difference, shot-to-shot phase variation, and the B0 field changes because of field drift and eddy currents across different dynamics. After the phase-corrected subspace reconstruction, artifacts-free high-SNR diffusion images at multiple TEs are obtained with varying T2 * weighting. RESULTS: Simulation, phantom, and in vivo experiments were performed, which validated the 3-shot spatiotemporal encoding provides accurate reconstruction at submillimeter resolution. The use of echo-train shifting and optimized readout length improves the SNR-efficiency by 27%-36% over single-shot EPI. The level of image distortion was also evaluated, which shows no noticeable susceptibility and eddy-current distortions in ACE-EPTI images that are common in EPI. The time-resolved acquisition of ACE-EPTI also provides multi-TE images for diffusion-relaxometry analysis. CONCLUSION: ACE-EPTI was demonstrated to be an efficient and powerful technique for high-resolution diffusion imaging and diffusion-relaxometry, which provides high SNR, distortion- and blurring-free, and time-resolved multi-echo images by a fast 3-shot acquisition.


Assuntos
Encéfalo , Processamento de Imagem Assistida por Computador , Artefatos , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos
8.
Sci Data ; 9(1): 7, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042861

RESUMO

Strong gradient systems can improve the signal-to-noise ratio of diffusion MRI measurements and enable a wider range of acquisition parameters that are beneficial for microstructural imaging. We present a comprehensive diffusion MRI dataset of 26 healthy participants acquired on the MGH-USC 3 T Connectome scanner equipped with 300 mT/m maximum gradient strength and a custom-built 64-channel head coil. For each participant, the one-hour long acquisition systematically sampled the accessible diffusion measurement space, including two diffusion times (19 and 49 ms), eight gradient strengths linearly spaced between 30 mT/m and 290 mT/m for each diffusion time, and 32 or 64 uniformly distributed directions. The diffusion MRI data were preprocessed to correct for gradient nonlinearity, eddy currents, and susceptibility induced distortions. In addition, scan/rescan data from a subset of seven individuals were also acquired and provided. The MGH Connectome Diffusion Microstructure Dataset (CDMD) may serve as a test bed for the development of new data analysis methods, such as fiber orientation estimation, tractography and microstructural modelling.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Neuroimagem , Adulto , Idoso , Conectoma , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
Neuroimage ; 245: 118641, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34655771

RESUMO

Spin-echo (SE) BOLD fMRI has high microvascular specificity, and thus provides a more reliable means to localize neural activity compared to conventional gradient-echo BOLD fMRI. However, the most common SE BOLD acquisition method, SE-EPI, is known to suffer from T2' contrast contamination with undesirable draining vein bias. To address this, in this study, we extended a recently developed distortion/blurring-free multi-shot EPI technique, Echo-Planar Time-resolved Imaging (EPTI), to cortical-depth dependent SE-fMRI at 7T to test whether it could provide purer SE BOLD contrast with minimal T2' contamination for improved neuronal specificity. From the same acquisition, the time-resolved feature of EPTI also provides a series of asymmetric SE (ASE) images with varying T2' weightings, and enables extraction of data equivalent to conventional SE EPI with different echo train lengths (ETLs). This allows us to systematically examine how T2'-contribution affects different SE acquisition strategies using a single dataset. A low-rank spatiotemporal subspace reconstruction was implemented for the SE-EPTI acquisition, which incorporates corrections for both shot-to-shot phase variations and dynamic B0 drifts. SE-EPTI was used in a visual task fMRI experiment to demonstrate that i) the pure SE image provided by EPTI results in the highest microvascular specificity; ii) the ASE EPTI series, with a graded introduction of T2' weightings at time points farther away from the pure SE, show a gradual sensitivity increase along with increasing draining vein bias; iii) the longer ETL seen in conventional SE EPI acquisitions will induce more draining vein bias. Consistent results were observed across multiple subjects, demonstrating the robustness of the proposed technique for SE-BOLD fMRI with high specificity.


Assuntos
Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Ecoplanar/métodos , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Sensibilidade e Especificidade
10.
Neuroimage ; 243: 118530, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34464739

RESUMO

The first phase of the Human Connectome Project pioneered advances in MRI technology for mapping the macroscopic structural connections of the living human brain through the engineering of a whole-body human MRI scanner equipped with maximum gradient strength of 300 mT/m, the highest ever achieved for human imaging. While this instrument has made important contributions to the understanding of macroscale connectional topology, it has also demonstrated the potential of dedicated high-gradient performance scanners to provide unparalleled in vivo assessment of neural tissue microstructure. Building on the initial groundwork laid by the original Connectome scanner, we have now embarked on an international, multi-site effort to build the next-generation human 3T Connectome scanner (Connectome 2.0) optimized for the study of neural tissue microstructure and connectional anatomy across multiple length scales. In order to maximize the resolution of this in vivo microscope for studies of the living human brain, we will push the diffusion resolution limit to unprecedented levels by (1) nearly doubling the current maximum gradient strength from 300 mT/m to 500 mT/m and tripling the maximum slew rate from 200 T/m/s to 600 T/m/s through the design of a one-of-a-kind head gradient coil optimized to minimize peripheral nerve stimulation; (2) developing high-sensitivity multi-channel radiofrequency receive coils for in vivo and ex vivo human brain imaging; (3) incorporating dynamic field monitoring to minimize image distortions and artifacts; (4) developing new pulse sequences to integrate the strongest diffusion encoding and highest spatial resolution ever achieved in the living human brain; and (5) calibrating the measurements obtained from this next-generation instrument through systematic validation of diffusion microstructural metrics in high-fidelity phantoms and ex vivo brain tissue at progressively finer scales with accompanying diffusion simulations in histology-based micro-geometries. We envision creating the ultimate diffusion MRI instrument capable of capturing the complex multi-scale organization of the living human brain - from the microscopic scale needed to probe cellular geometry, heterogeneity and plasticity, to the mesoscopic scale for quantifying the distinctions in cortical structure and connectivity that define cyto- and myeloarchitectonic boundaries, to improvements in estimates of macroscopic connectivity.


Assuntos
Conectoma/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Neuroimagem/métodos , Imagens de Fantasmas
11.
Sci Data ; 8(1): 122, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33927203

RESUMO

We present a whole-brain in vivo diffusion MRI (dMRI) dataset acquired at 760 µm isotropic resolution and sampled at 1260 q-space points across 9 two-hour sessions on a single healthy participant. The creation of this benchmark dataset is possible through the synergistic use of advanced acquisition hardware and software including the high-gradient-strength Connectom scanner, a custom-built 64-channel phased-array coil, a personalized motion-robust head stabilizer, a recently developed SNR-efficient dMRI acquisition method, and parallel imaging reconstruction with advanced ghost reduction algorithm. With its unprecedented resolution, SNR and image quality, we envision that this dataset will have a broad range of investigational, educational, and clinical applications that will advance the understanding of human brain structures and connectivity. This comprehensive dataset can also be used as a test bed for new modeling, sub-sampling strategies, denoising and processing algorithms, potentially providing a common testing platform for further development of in vivo high resolution dMRI techniques. Whole brain anatomical T1-weighted and T2-weighted images at submillimeter scale along with field maps are also made available.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/ultraestrutura , Conectoma , Imagem de Difusão por Ressonância Magnética , Humanos
12.
Magn Reson Med ; 86(2): 791-803, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33748985

RESUMO

PURPOSE: We combine SNR-efficient acquisition and model-based reconstruction strategies with newly available hardware instrumentation to achieve distortion-free in vivo diffusion MRI of the brain at submillimeter-isotropic resolution with high fidelity and sensitivity on a clinical 3T scanner. METHODS: We propose blip-up/down acquisition (BUDA) for multishot EPI using interleaved blip-up/blip-down phase encoding and incorporate B0 forward-modeling into structured low-rank reconstruction to enable distortion-free and navigator-free diffusion MRI. We further combine BUDA-EPI with an SNR-efficient simultaneous multislab acquisition (generalized slice-dithered enhanced resolution ["gSlider"]), to achieve high-isotropic-resolution diffusion MRI. To validate gSlider BUDA-EPI, whole-brain diffusion data at 860-µm and 780-µm data sets were acquired. Finally, to improve the conditioning and minimize noise penalty in BUDA reconstruction at very high resolutions where B0 inhomogeneity can have a detrimental effect, the level of B0 inhomogeneity was reduced by incorporating slab-by-slab dynamic shimming with a 32-channel AC/DC coil into the acquisition. Whole-brain 600-µm diffusion data were then acquired with this combined approach of gSlider BUDA-EPI with dynamic shimming. RESULTS: The results of 860-µm and 780-µm datasets show high geometry fidelity with gSlider BUDA-EPI. With dynamic shimming, the BUDA reconstruction's noise penalty was further alleviated. This enables whole-brain 600-µm isotropic resolution diffusion imaging with high image quality. CONCLUSIONS: The gSlider BUDA-EPI method enables high-quality, distortion-free diffusion imaging across the whole brain at submillimeter resolution, where the use of multicoil dynamic B0 shimming further improves reconstruction performance, which can be particularly useful at very high resolutions.


Assuntos
Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar
13.
Neuroimage ; 232: 117897, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33621694

RESUMO

Myelin water imaging techniques based on multi-compartment relaxometry have been developed as an important tool to measure myelin concentration in vivo, but are limited by the long scan time of multi-contrast multi-echo acquisition. In this work, a fast imaging technique, termed variable flip angle Echo Planar Time-Resolved Imaging (vFA-EPTI), is developed to acquire multi-echo and multi-flip-angle gradient-echo data with significantly reduced acquisition time, providing rich information for multi-compartment analysis of gradient-echo myelin water imaging (GRE-MWI). The proposed vFA-EPTI method achieved 26 folds acceleration with good accuracy by utilizing an efficient continuous readout, optimized spatiotemporal encoding across echoes and flip angles, as well as a joint subspace reconstruction. An approach to estimate off-resonance field changes between different flip-angle acquisitions was also developed to ensure high-quality joint reconstruction across flip angles. The accuracy of myelin water fraction (MWF) estimate under high acceleration was first validated by a retrospective undersampling experiment using a lengthy fully-sampled data as reference. Prospective experiments were then performed where whole-brain MWF and multi-compartment quantitative maps were obtained in 5 min at 1.5 mm isotropic resolution and 24 min at 1 mm isotropic resolution at 3T. Additionally, ultra-high resolution data at 600 µm isotropic resolution were acquired at 7T, which show detailed structures within the cortex such as the line of Gennari, demonstrating the ability of the proposed method for submillimeter GRE-MWI that can be used to study cortical myeloarchitecture in vivo.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina/metabolismo , Humanos , Estudos Retrospectivos , Água/metabolismo
14.
Magn Reson Med ; 84(5): 2442-2455, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32333478

RESUMO

PURPOSE: To develop new encoding and reconstruction techniques for fast multi-contrast/quantitative imaging. METHODS: The recently proposed Echo Planar Time-resolved Imaging (EPTI) technique can achieve fast distortion- and blurring-free multi-contrast/quantitative imaging. In this work, a subspace reconstruction framework is developed to improve the reconstruction accuracy of EPTI at high encoding accelerations. The number of unknowns in the reconstruction is significantly reduced by modeling the temporal signal evolutions using low-rank subspace. As part of the proposed reconstruction approach, a B0 -update algorithm and a shot-to-shot B0 variation correction method are developed to enable the reconstruction of high-resolution tissue phase images and to mitigate artifacts from shot-to-shot phase variations. Moreover, the EPTI concept is extended to 3D k-space for 3D GE-EPTI, where a new "temporal-variant" of CAIPI encoding is proposed to further improve performance. RESULTS: The effectiveness of the proposed subspace reconstruction was demonstrated first in 2D GESE EPTI, where the reconstruction achieved higher accuracy when compared to conventional B0 -informed GRAPPA. For 3D GE-EPTI, a retrospective undersampling experiment demonstrates that the new temporal-variant CAIPI encoding can achieve up to 72× acceleration with close to 2× reduction in reconstruction error when compared to conventional spatiotemporal-CAIPI encoding. In a prospective undersampling experiment, high-quality whole-brain T2∗ and tissue phase maps at 1 mm isotropic resolution were acquired in 52 seconds at 3T using 3D GE-EPTI with temporal-variant CAIPI encoding. CONCLUSION: The proposed subspace reconstruction and optimized temporal-variant CAIPI encoding can further improve the performance of EPTI for fast quantitative mapping.


Assuntos
Imagem Ecoplanar , Processamento de Imagem Assistida por Computador , Algoritmos , Artefatos , Encéfalo/diagnóstico por imagem , Estudos Prospectivos , Estudos Retrospectivos
15.
Magn Reson Med ; 84(1): 206-220, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31840295

RESUMO

PURPOSE: Spin-echo functional MRI (SE-fMRI) has the potential to improve spatial specificity when compared with gradient-echo fMRI. However, high spatiotemporal resolution SE-fMRI with large slice-coverage is challenging as SE-fMRI requires a long echo time to generate blood oxygenation level-dependent (BOLD) contrast, leading to long repetition times. The aim of this work is to develop an acquisition method that enhances the slice-coverage of SE-fMRI at high spatiotemporal resolution. THEORY AND METHODS: An acquisition scheme was developed entitled multisection excitation by simultaneous spin-echo interleaving (MESSI) with complex-encoded generalized slice dithered enhanced resolution (cgSlider). MESSI uses the dead-time during the long echo time by interleaving the excitation and readout of 2 slices to enable 2× slice-acceleration, while cgSlider uses the stable temporal background phase in SE-fMRI to encode/decode 2 adjacent slices simultaneously with a "phase-constrained" reconstruction method. The proposed cgSlider-MESSI was also combined with simultaneous multislice (SMS) to achieve further slice-acceleration. This combined approach was used to achieve 1.5-mm isotropic whole-brain SE-fMRI with a temporal resolution of 1.5 s and was evaluated using sensory stimulation and breath-hold tasks at 3T. RESULTS: Compared with conventional SE-SMS, cgSlider-MESSI-SMS provides 4-fold increase in slice-coverage for the same repetition time, with comparable temporal signal-to-noise ratio. Corresponding fMRI activation from cgSlider-MESSI-SMS for both fMRI tasks were consistent with those from conventional SE-SMS. Overall, cgSlider-MESSI-SMS achieved a 32× encoding-acceleration by combining Rinplane × MB × cgSlider × MESSI = 4 × 2 × 2 × 2. CONCLUSION: High-quality, high-resolution whole-brain SE-fMRI was acquired at a short repetition time using cgSlider-MESSI-SMS. This method should be beneficial for high spatiotemporal resolution SE-fMRI studies requiring whole-brain coverage.


Assuntos
Mapeamento Encefálico , Imagem Ecoplanar , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Razão Sinal-Ruído
16.
Magn Reson Med ; 83(6): 2124-2137, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31703154

RESUMO

PURPOSE: To develop a motion-robust extension to the recently developed echo-planar time-resolved imaging (EPTI) approach, referred to as PROPELLER EPTI with dynamic encoding (PEPTIDE), by incorporating rotations into the rapid, multishot acquisition to enable shot-to-shot motion correction. METHODS: Echo-planar time-resolved imaging is a multishot EPI-based approach that allows extremely rapid acquisition of distortion-free and blurring-free multicontrast imaging and quantitative mapping. By combining k-space encoding rotations into the EPTI sampling strategy to repeatedly sample the low-resolution k-space center, PEPTIDE enables significant tolerance to shot-to-shot motion and B0 phase variations. Retrospective PEPTIDE data sets are created through a combination of in vivo EPTI data sets with rotationally acquired protocols, to enable direct comparison of the 2 methods and their robustness to identical motion. The PEPTIDE data sets are also prospectively acquired and again compared with EPTI, in the presence of true subject motion. RESULTS: The PEPTIDE approach is shown to be motion-robust to even severe subject motion (demonstrated > 30° in-plane rotation, alongside translational and through-plane motion), while maintaining the rapid encoding benefits of the EPTI technique. The technique enables accurate quantitative maps to be calculated from even severe motion data sets. While the performance of the motion correction depends on the type and severity of motion encountered, in all cases PEPTIDE significantly increases image quality in the presence of motion comparative to conventional EPTI. CONCLUSION: The newly developed PEPTIDE technique combines a high degree of motion tolerance into the EPTI framework, enabling highly rapid acquisition of distortion-free and blurring-free images at multiple TEs in the presence of motion.


Assuntos
Imagem Ecoplanar , Processamento de Imagem Assistida por Computador , Artefatos , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Movimento (Física) , Peptídeos , Estudos Retrospectivos
17.
Neuroimage ; 194: 291-302, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30953837

RESUMO

PURPOSE: To propose a virtual coil (VC) acquisition/reconstruction framework to improve highly accelerated single-shot EPI (SS-EPI) and generalized slice dithered enhanced resolution (gSlider) acquisition in high-resolution diffusion imaging (DI). METHODS: For robust VC-GRAPPA reconstruction, a background phase correction scheme was developed to match the image phase of the reference data with the corrupted phase of the accelerated diffusion-weighted data, where the corrupted phase of the diffusion data varies from shot to shot. A Gy prewinding-blip was also added to the EPI acquisition, to create a shifted-ky sampling strategy that allows for better exploitation of VC concept in the reconstruction. To evaluate the performance of the proposed methods, 1.5 mm isotropic whole-brain SS-EPI and 860 µm isotropic whole-brain gSlider-EPI diffusion data were acquired at an acceleration of 8-9 fold. Conventional and VC-GRAPPA reconstructions were performed and compared, and corresponding g-factors were calculated. RESULTS: The proposed VC reconstruction substantially improves the image quality of both SS-EPI and gSlider-EPI, with reduced g-factor noise and reconstruction artifacts when compared to the conventional method. This has enabled high-quality low-noise diffusion imaging to be performed at 8-9 fold acceleration. CONCLUSIONS: The proposed VC acquisition/reconstruction framework improves the reconstruction of DI at high accelerations. The ability to now employ such high accelerations will allow DI with EPI at reduced distortion and faster scan time, which should be beneficial for many clinical and neuroscience applications.


Assuntos
Encéfalo/fisiologia , Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Humanos
18.
Magn Reson Med ; 81(6): 3599-3615, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30714198

RESUMO

PURPOSE: To develop an efficient distortion- and blurring-free multi-shot EPI technique for time-resolved multiple-contrast and/or quantitative imaging. METHODS: EPI is a commonly used sequence but suffers from geometric distortions and blurring. Here, we introduce a new multi-shot EPI technique termed echo planar time-resolved imaging (EPTI), which has the ability to rapidly acquire distortion- and blurring-free multi-contrast data set. The EPTI approach performs encoding in ky -t space and uses a new highly accelerated spatio-temporal CAIPI sampling trajectory to take advantage of signal correlation along these dimensions. Through this acquisition and a B0 -informed parallel imaging reconstruction, hundreds of "time-resolved" distortion- and blurring-free images at different TEs across the EPI readout window can be created at sub-millisecond temporal increments using a small number of EPTI shots. Moreover, a method for self-estimation and correction of shot-to-shot B0 variations was developed. Simultaneous multi-slice acquisition was also incorporated to further improve the acquisition efficiency. RESULTS: We evaluated EPTI under varying simulated acceleration factors, B0 -inhomogeneity, and shot-to-shot B0 variations to demonstrate its ability to provide distortion- and blurring-free images at multiple TEs. Two variants of EPTI were demonstrated in vivo at 3T: (1) a combined gradient- and spin-echo EPTI for quantitative mapping of T2 , T2* , proton density, and susceptibility at 1.1 × 1.1 × 3 mm3 whole-brain in 28 s (0.8 s/slice), and (2) a gradient-echo EPTI, for multi-echo and quantitative T2* fMRI at 2 × 2 × 3 mm3 whole-brain at a 3.3 s temporal resolution. CONCLUSION: EPTI is a new approach for multi-contrast and/or quantitative imaging that can provide fast acquisition of distortion- and blurring-free images at multiple TEs.


Assuntos
Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Encéfalo/diagnóstico por imagem , Simulação por Computador , Humanos , Imagens de Fantasmas
19.
Magn Reson Med ; 81(1): 377-392, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30229562

RESUMO

PURPOSE: To develop a method for fast distortion- and blurring-free imaging. THEORY: EPI with point-spread-function (PSF) mapping can achieve distortion- and blurring-free imaging at a cost of long acquisition time. In this study, an acquisition/reconstruction technique, termed "tilted-CAIPI," is proposed to achieve >20× acceleration for PSF-EPI. The proposed method systematically optimized the k-space sampling trajectory with B0 -inhomogeneity-informed reconstruction, to exploit the inherent signal correlation in PSF-EPI and take full advantage of coil sensitivity. Susceptibility-induced phase accumulation is regarded as an additional encoding that is estimated by calibration data and integrated into reconstruction. Self-navigated phase correction was developed to correct shot-to-shot phase variation in diffusion imaging. METHODS: Tilted-CAIPI was implemented at 3T, with incorporation of partial Fourier and simultaneous multislice to achieve further accelerations. T2 -weighted, T2* -weighted, and diffusion-weighted imaging experiments were conducted to evaluate the proposed method. RESULTS: The ability of tilted-CAIPI to provide highly accelerated imaging without distortion and blurring was demonstrated through in vivo brain experiments, where only 8 shots per simultaneous slice group were required to provide high-quality, high-SNR imaging at 0.8-1 mm resolution. CONCLUSION: Tilted-CAIPI achieved fast distortion- and blurring-free imaging with high SNR. Whole-brain T2 -weighted, T2* -weighted, and diffusion imaging can be obtained in just 15-60 s.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem Ecoplanar , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Artefatos , Calibragem , Imagem de Difusão por Ressonância Magnética , Análise de Fourier , Humanos , Aumento da Imagem/métodos , Movimento (Física) , Imagens de Fantasmas , Estudos Retrospectivos , Razão Sinal-Ruído
20.
Med Phys ; 45(7): 3196-3204, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29758101

RESUMO

PURPOSE: Multishot interleaved echo-planar imaging (iEPI) can achieve higher image resolution than single-shot EPI for diffusion tensor imaging (DTI), but its application is limited by the prolonged acquisition time. To reduce the acquisition time, a novel model-based reconstruction for simultaneous multislice (SMS) and parallel imaging (PI) accelerated iEPI DTI is proposed. MATERIALS AND METHODS: DTI datasets acquired by iEPI with SMS and PI acceleration can be regarded as 3D k-space data, which is undersampled along both the slice and phase encoding directions. Instead of reconstruction of individual diffusion-weighted image, diffusion tensors are directly estimated by the joint reconstruction of undersampled 3D k-space from all diffusion-encoding directions using a model-based formulation to exploit the correlation across different directions. DTI simulation and in vivo acquisition were used to demonstrate the superior performance of the proposed method. RESULTS: The proposed method reduced the estimation errors and artifacts than traditional parallel imaging reconstruction in DTI simulation. In the in vivo DTI experiment, the acquisition time of 4-shot iEPI was reduced from 11 min 7 s to 3 min 53 s with an acceleration factor of 4, and the image quality and precision of quantitative parameters were comparable with the fully sampled acquisition. CONCLUSIONS: The proposed model-based reconstruction for iEPI DTI with SMS and PI can achieve fourfold acceleration while maintaining high accuracy for tensor measurements.


Assuntos
Imagem de Tensor de Difusão , Processamento de Imagem Assistida por Computador/métodos , Modelos Estatísticos , Algoritmos , Anisotropia , Distribuição Normal , Razão Sinal-Ruído , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...